Главная » 2014 » Февраль » 17 » 2012
13:26
 

2012

11.05.2012

Одной из главных задач при реконструкции автомобильных дорог является повышение обеспеченной дорогой скорости, пропускной способности и безопасности движения.

Наиболее распространенной мерой решения этих задач служит увеличение ширины укрепленной поверхности дороги, которое может быть достигнуто различными способами: уширением проезжей части, то есть дорожной одежды, устройством укрепленных краевых полос, укреплением обочин, комбинацией из двух или трех перечисленных способов. Наибольшее значение имеет ширина основной поверхности, в состав которой входит ширина проезжей части и краевых укрепленных полос.

Установлено, что режим и безопасность движения автомобилей имеют прямую зависимость от ширины укрепленной поверхности дороги, которая обеспечивает размеры психологически безопасного коридора.

Для повышения скорости и безопасности движения устройство краевых укрепленных полос и обочин соизмеримо с увеличением ширины проезжей части, хотя конструкция дорожных одежд на краевой полосе и на обочине может существенно отличаться по толщине от конструкции дорожной одежды на проезжей части. Поэтому при назначении величины и способа уширения укрепленной поверхности необходимо рассматривать и сравнивать экономически все возможные варианты решения этой задачи с учетом технологических особенностей выполнения работ при различных конструктивных решениях.

Установлено, что необходимая для обеспечения удобного и безопасного движения ширина укрепленной поверхности двухполосных дорог с интенсивным движением составляет 8,5-9,0 м. Это требование соблюдено на дорогах с шириной проезжей части 7-7,5 м и шириной краевых полос 0,5-0,75 м, укрепленных каменными материалами, обработанными органическими или минеральными вяжущими. Однако на многих существующих дорогах ширина укрепленной поверхности не отвечает требованиям СНиП. На этих дорогах в процессе частичной или полной реконструкции в первую очередь производится уширение проезжей части или устройство краевых укрепленных полос с укреплением обочин. Требуемая величина уширения в соответствии со СНиП 2.05.02 -85 зависит от категории реконструируемой дороги (табл. 4). Необходимые величины уширений проезжей части могут составлять 0,5-1,5 м, а с учетом ширины краевых полос 2,5 м.

Следует также учитывать, что в соответствии со СНиП 2.05.02 -85 в ряде случаев на обочинах должно быть предусмотрено устройство твердых покрытий (остановочных полос) на ширину 2,5 м. В этом случае необходимое уширение проезжей части будет существенно превышать величины, приведенные в табл. 4

Таблица 4.

Категория дороги Величина уширения, м существующей реконструируемой проезжей части проезжей части и краевых полос II I - - III I 0,5 1,0 III II 0,5 1,0 IV II 1,5 2,0 IV III 1,0 1,0 V IV 1,5 2,5

Уширение проезжей части и устройство краевых укрепленных полос производится, как правило, без уширения земляного полотна за счет уменьшения ширины обочин.

На некоторых двухполосных дорогах с высокой интенсивностью движения при ограниченных финансовых ресурсах принимают паллиативное решение: уширение проезжей части на одну полосу движения за счет уменьшения ширины обочин без уширения земляного полотна. В этом случае дорога имеет трехполосную проезжую часть, на которой снижается безопасность движения, но возрастает пропускная способность. Узкие обочины нужно тщательно укрепить материалами, обработанными вяжущим. Такое решение дает возможность временно продолжить эксплуатацию дороги до момента ее полной реконструкции и тем самым отдалить крупные единовременные затраты.

При полной реконструкции автомобильной дороги II и III категорий часто проектируют перевод таких дорог в I категорию, то есть двухстороннее симметричное уширение проезжей части с добавлением четного количества полос движения и одновременным уширением земляного полотна или строительство новой проезжей части на отдельном земляном полотне.

Способ уширения проезжей части обычно определяется способом уширения земляного полотна. Кроме того, способ уширения дорожной одежды зависит также от того, необходимо ли провести одновременно усиление дорожной одежды. В связи с этим возможны следующие варианты:

1. Одностороннее несимметричное уширение дорожной одежды, что вызывает необходимость устройства выравнивающего слоя и новой дорожной одежды на всю ширину уширения проезжей части.

При необходимости уширения дорожной одежды на величину более 2,0 м в сторону обочины, имеющей ширину 2,5 м, срезают все земляное полотно с уширяемой стороны (рис. 11, а). Сначала срезают и удаляют в сторону дерновый покров, затем остальную часть земляного полотна, используя грунт на уширение земляного полотна ниже дорожной одежды. После уширения и укатки земляного полотна до нижней поверхности дополнительного слоя основания отсыпают материал для уширения этого слоя. Затем отсыпают грунт слоями до поверхности дополнительного слоя основания для образования уширяемой части земляного полотна и укатывают.

Технологический процесс устройства дорожной одежды на полосах уширения во всех случаях включает обрезку кромки покрытия с помощью дисковых пил, навешиваемых на трактор.

По поверхности уширенного дополнительного слоя основания отсыпают и укатывают материал для уширения основания и вровень с ним отсыпают и укатывают грунт земляного полотна в пределах обочины. После этого устраивают уширение покрытия — укладывают выравнивающий слой и поверх него новый верхний слой покрытия на всю ширину проезжей части. После окончания работ по устройству покрытия укрепляют обочины, укладывая на них, если это предусмотрено проектом, покрытие более облегченное, чем на проезжей части, и окончательно отделывают земляное полотно, укладывая на откосы ранее снятый дерн.

При уширении проезжей части на меньшую ширину (до 1,0-1,5 м) сохраняют старое земляное полотно, послойно его уширяя. Уширение дорожной одежды устраивают в траншее, прорываемой вдоль старой дорожной одежды (рис. 11, б).

2. Двухстороннее уширение проезжей части, которое также может быть осуществлено двумя способами:

уширение только основания и перекрытие полос уширения и старого покрытия новым покрытием, то есть усиление старого покрытия на уширенном с двух сторон земляном полотне (рис. 12, а);

уширение достаточной по прочности старой дорожной одежды только на величину полос уширения, то есть с каждой стороны на 0,25-0,75 м (рис. 12, б).

При двухстороннем уширении дорог без разделительной полосы (ниже I категории) ось проезжей части после реконструкции совпадает с осью проезжей части до реконструкции. В этом случае поперечный профиль проезжей части обычно сохраняется, но ширина полосы уширения большей частью невелика. Так, например, при реконструкции дороги III категории, имеющей проезжую часть 7,0 м (без краевой полосы), чтобы получить проезжую часть дороги II категории с краевой полосой (ширина укрепленной поверхности 9,0 м), достаточно устроить уширение с каждой стороны по 1,0 м. А если дороги III категории имеют краевую полосу, то ширина полосы уширения уменьшается до 0,5 м.

Рис. 11. Схема одностороннего несимметричного уширения дорожной одежды и земляного полотна:

а) уширение со срезкой земляного полотна; б) уширение в траншее; 0-0 — старая ось дорожной одежды; 1-1 — новая ось; h р.гр. - толщина снимаемого слоя растительного грунта; 1 — верхний слой нового дорожного покрытия; 2 — выравнивающий слой; 3 — верхний слой старого покрытия и продолжение его на уширении; 4 — нижний слой старого покрытия; 5 — основание; 6 — дополнительный слой основания и продолжение его на уширении; 7 — земляное полотно; 8 — присыпная обочина; 9 — слой уширения основания; 10 — слои уширения земляного полотна

Рис. 12. Двухстороннее уширение дорожной одежды:

а — с двухсторонним уширением земляного полотна и перекрытием всей проезжей части новым верхним слоем покрытия; б — устройство краевых полос шириной по 0,25-0,75 м с каждой стороны без уширения земляного полотна

Уширение проезжей части на 0,25 м наиболее сложно, так как подготовка узкого ровика и уплотнение основания механизированным способом затруднительны. Поэтому таких уширений стараются избегать. За рубежом небольшие уширения проезжей части делают в виде полос из двух рядов брусчатки или нескольких рядов мозаиковой шашки. Брусчатку или шашку ставят на песке, щебеночном или гравийном материале.

Технология работ по устройству на полосе уширения дорожного основания и покрытия по существу не отличается от работ, проводимых по устройству новой дорожной одежды. Они лишь усложняются тем, что выполнять их необходимо в узком котловане — траншее. Ширина существующих строительных дорожных машин превосходит уширяемую полосу. В связи с этим необходимо применять специальные машины или использовать навесное оборудование.

Технология работ по уширению требует выполнения ряда рабочих операций.

После разбивки ширины полосы уширения разрыхляют грунт и материал укрепленной обочины на этой полосе. Рыхление на всю ширину будущей траншеи выполняют любой из имеющихся машин — кирковщиками на автогрейдере, на катке или другими прицепными и самоходными машинами. Если траншея глубже, чем могут достать зубья кирковщика, приходится операцию повторять после удаления верхнего разрыхленного слоя материала. Нижние слои одежд, обычно грунтовые, не так уплотнены, как верхние, и поэтому могут и не требовать дополнительной кирковки.

Вдоль кромки дорожной одежды устраивают корыто для полосы уширения шириной 0,75-1,5 м. Эту траншею глубиной до 0,5-0,8 м прорывают несколькими проходами автогрейдера. При этом стенки траншеи получаются неровными и невертикальными. Более целесообразно отрывать траншеи автогрейдером с накладкой, предложенной В.М. Гайдовским. Накладка состоит из двух частей — собственно накладки и режущей части (ножа). Накладку крепят с правой стороны отвала автогрейдера при помощи четырех болтов [ 78].

Применяя накладки разных размеров, можно менять ширину и глубину траншей. Схему и число проходов автогрейдера назначают в зависимости от плотности и влажности грунта, в котором прорезают траншею. Удобство описываемого способа устройства траншеи в том, что вынимаемый из нее грунт или материал отваливается на обочину и не загрязняет проезжей части. Ширину корыта можно в известных пределах менять при одной и той же накладке, устанавливая нож под разными углами в плане. Скорость движения автогрейдера при рытье траншеи в предварительно разрыхленном грунте составляет 10 км/ч.

При отрывке глубоких траншей в зависимости от их ширины применяют скребковые и многоковшовые траншейные экскаваторы (табл. 5). Преимущество экскаваторов заключается в том, что они могут, если это необходимо, погружать материал из траншеи в автомобили-самосвалы, которые их отвозят в другое место.

Таблица 5

Технические параметры экскаваторов непрерывного действия

Параметры машин Марка экскаватора ЭТР-132 ЭТР-162 ЭР-7АМ ЭТР-231 ЭТЦ-202 ЭТЦ-163 ЭТЦ-161 ЭТЦ-354 Глубина отрываемой траншеи, м 1,3 1,6 1,8-2,2 2,3 2,0 1,7 До 1,6 До 3,5 Ширина траншеи, м 0,27 0,8 1,0-1,4 1,8 0,5 0,25 0,2 и 0,4 До 2,8 Рабочая скорость, м/ч 10-800 5-300 31-300 38-224 15-590 15-500 10-400 12,5-114,01 Выдерживаемый уклон дна траншеи, ‰ До 100 ‰ на подъемах и спусках до 10 ‰ 2,0-20 1,5-30 До 60 Тип экскаватора Роторный ковшовый Цепной Цепной Ковшовый Скребковый Ковшовый

После прорытия и очистки траншеи проверяют ее размеры и приступают к заполнению материалами, предусмотренными по проекту, с соблюдением необходимой толщины слоев. Материал доставляют к траншее, вначале автогрейдером распределяют у края покрытия в валик, из которого этим же автогрейдером сдвигают в траншею. В траншее материал разравнивают автогрейдером с той же накладкой, которой прорывали траншею.

После уплотнения таким же способом засыпают в траншею материал для следующего слоя. Для этого применяют специальный распределитель. Щебень, загруженный в него из автомобиля-самосвала, перемешается вдоль ящика распределителя к лотку, из которого ссыпается в траншею. При определенной постоянной скорости движения щебень, ссыпающийся через лоток в траншею, распределяется слоем требуемой толщины. По этому же принципу распределяют асфальтобетонные смеси. При необходимости розлива битума на полосу покрытия необходимой ширины соответствующим образом регулируют сопла автогудронатора.

Наиболее сложной операцией при работе по уширению проезжей части является послойное уплотнение каждого слоя материала, засыпанного в траншею. Обычные катки имеют ширину вальцов, большую, чем траншея, поэтому уплотнение производят при помощи ручных виброплит, или специальных малогабаритных катков (табл. 6).

Таблица 6

Технические параметры виброплит

Марка виброплиты Фирма, страна Масса, кг Ширина уплотнения, м Отношение вынуждающей силы к частоте, кг/Гц Мощность, кВт GY -700 Динапак, Швеция 700 0,85 5000/50 12,8 PV -5000 АБГ, Германия 700 1,0 5000/50 11,0 SV -8022 Делмаг, Германия 850 1,2 8000/44 14,7 SV -4512 Делмаг, Германия 380 0,75 4500/46 5,5 ВР-50 Бомаг, Германия 400 0,9 3500/58 5,1 ВР-34 Бомаг, Германия 610 1,1 5100/24 6,2 ДУ-90 Волгодонский завод, Россия 230 0,55 2400/80 4,4

Верхний слой покрытия, поверхность которого после уплотнения должна быть расположена в одном уровне со старым покрытием, уплотняют обычными тяжелыми катками. Слабым местом этих конструкций является шов между старой дорожной одеждой и уширяемой полосой. Для обеспечения равно прочности полосы уширения и основной дорожной одежды толщину каменных слоев уширяемой полосы принимают больше, чем в старой дорожной одежде.

Прочность дорожной одежды полосы уширения должна быть равна прочности основной дорожной одежды. При укладке слоев одежды на уширении нужно тщательно контролировать степень уплотнения. После устройства дорожной одежды на уширении перекрывают всю проезжую часть, включая существующую дорожную одежду, слоем асфальтобетона с таким расчетом, чтобы продольный стык на нем не совпадал (в плане) с точками сопряжения существующей и уширяемой дорожных одежд.

Для предотвращения образования отраженных трещин под зоной сопряжения существующей и уширяемой дорожных одежд укладывают армирующую прослойку из жестких, обладающих минимальной растяжимостью синтетических материалов (сеток). Верхний слой асфальтобетона, перекрывающий всю проезжую часть, целесообразно устраивать из полимерасфальтобетонной смеси.

Для обеспечения лучшего сопряжения нового и старого покрытий применяют различные способы армирования асфальтобетона на участках уширения дорожных одежд приведённых на рис. 13-18 (Аливер Ю.А. Применение геосинтетических материалов для повышения трещиностойкости асфальтобетонных покрытий на реконструируемых участках автомобильных дорог. // Применение геосинтет. и геопластиковых материалов при стр-е, реконструкции и ремонте автомоб. дорог. — М., 2001. — 162 с. — Тр. / Союздорнии; Вып. 201.).

На рис. 13 показано однослойное армирование продольного шва расширения существующей дороги. В этом случае армирующий рулонный геосинтетический материал укладывают под верхний слой асфальтобетона или непосредственно на подготовленную поверхность цементобетонного основания. В конструкции дорожной одежды такой материал воспринимает растягивающие усилия, возникающие от температурных и транспортных нагрузок, и сдерживает развитие трещин в зоне стыка. При этом длина анкеровки должна быть не менее 0,5 м, а для жестких материалов (стеклосетки, полиарамидные сетки) — больше.

Рис. 13. Однослойное армирование продольного шва:

1 — мелкозернистый асфальтобетон; 2 — то же, крупнозернистый; 3 — тощий бетон; 4 — булыжная мостовая; 5 — щебень; 6 — песок; 7 — асфальтобетон; 8 — рулонный геосинтетик

Рис. 14. Двухслойное армирование продольного шва: условные обозначения — см. рис. 13

На рис. 14 представлен вариант двухслойного армирования зоны стыка нового и старого покрытий высокопрочными рулонными геосинтетиками. Такой способ армирования является более эффек тивным и надежным, поскольку армоэлементы воспринимают гораздо большие растягивающие усилия. Кроме того, компенсируются возможные дефекты при нарушении технологии укладки геосинтетиков. В этом случае верхнюю армирующую прослойку можно сделать из менее прочного материала.

На рис. 15 показан вариант армирования зоны стыка нового и старого покрытий, в котором армирующий геосинтетический материал 8 предотвращает выход отраженной трещины на поверхность, а нижняя прослойка 9 из нетканого геотекстиля, пропитанная битумом, существенно снижает коэффициент сцепления нижнего и верхнего слоев. За счет этого горизонтальные подвижки (смещения) нижних слоев не передаются к верхним слоям дорожной одежды. В результате снижаются действующие напряжения в верхних слоях. Кроме того, геотекстильная прослойка, пропитанная битумом, предотвращает попадание воды и воздуха с поверхности в нижние слои дорожной одежды. Вместо нетканого геотекстиля можно применять высокопрочные композиции, например TRC — grid (фирма Colbond , Германия), PGM (фирма Polyfelt , Австрия), сочетающие нетканку и армирующую геосетку. Это позволяет армировать верхний слой и снизить сцепление между асфальтобетоном и цементобетонным основанием.

Рис. 15. Армирование продольного шва с компенсирующей прослойкой из нетканого геотекстиля:

1-8 — см. рис. 13, 9 — нетканый геотекстиль из полипропиленовых волокон

Одной из причин появления трещин в местах стыка старого и нового покрытий является разность осадок основания. Основание старого покрытия находится в стабильном состоянии (уже прошел процесс консолидации), новое основание может иметь деформации. Под нагрузкой от транспортных средств в новом основании могут возникать необратимые деформации. Разность осадок нового и старого оснований повлечет за собой вертикальные перемещения новой дорожной одежды, что, в свою очередь, вызовет появление трещин в асфальтобетонных слоях в зоне сопряжения. Для увеличения прочности нового основания и уменьшения осадок можно армировать его объемными пластиковыми георешетками и высокопрочными рулонными геосинтетиками (поз. 10 и 11 на рис. 16 и 18).

Рис. 16. Армирование асфальтобетона и песчаного слоя основания (обозначения — см. рис. 13);

9 — объемная пластиковая решетка; 10 — рулонный геосинтетический материал

Армирование сопряжения старого и нового покрытий, показанное на рис. 13-16 выполнено в одной вертикальной плоскости, представляющей собой зону максимальной концентрации напряжений. Эти напряжения можно существенно уменьшить, если расширить зону стыка.

На рис. 17 показан вариант сопряжения, в котором фрезерование старого покрытия выполнено уступом, а армирование новых слоев асфальтобетона — двухслойным с соответствующим смещением верхнего армоэлемента относительно нижней прослойки.

Рис. 17. Армирование при фрезеровании старого покрытия уступом (обозначения — см. рис. 13)

Эффективным может быть также вариант сопряжения, в котором уступ выполнен с разборкой асфальтобетона на всю глубину до центра цементобетонного основания (см. рис. 18). В этом случае уступ заполняется тощим бетоном 3 и слоем асфальтобетона 2. Верхние слои асфальтобетона армируют рулонными геосинтетическими материалами со смещением.

Рис. 18. Комбинированное укрепление зоны стыка (обозначения — см. рис. 13):

11 — высокопрочный рулонный геосинтетический материал

При уширении существующей проезжей части на дорогах I категории большей частью это уширение осуществляют на одну, две, а иногда и более полосы движения шириной по 3,5-3,75 м каждая. Технология строительства таких полос близка технологии нового строительства и вызывает меньше организационных затруднений, чем строительство узкой полосы. Однако здесь, как и во всех случаях уширения, большое значение имеет прочность сопряжения существующей дорожной одежды с новой конструкцией. Качество такого сопряжения обеспечивается в определенной степени применением близкой конструкции полосы уширения и существующей дорожной одежды, а также сплошным слоем усиления по всей полосе проезжей части. При этом необходимо, чтобы продольный стык полос укладки асфальтобетона при устройстве слоя усиления проходил над сопряжением старой одежды и полосы уширения.

Большой опыт реконструкции автомагистралей I категории дали работы, выполненные на Московской кольцевой автомобильной дороге (МКАД).

При реконструкции автомобильных дорог широкое распространение находят методы регенерации и повторного использования материалов дорожных одежд.

Регенерация в переводе с латинского языка — восстановление, возрождение. Применительно к дорожным одеждам и покрытиям регенерация означает восстановление их прочностных свойств, ровности, сплошности и т.д. Применительно к асфальтобетону регенерация — это обработка или переработка старого асфальтобетона с целью полезного изменения некоторых его свойств.

Следует различать близкие между собой термины регенерация — восстановление утерянных свойств материала и повторное использование материалов старого покрытия, которое в зарубежной литературе называется ресайклинг или рециклинг. Повторное использование материалов старого покрытия может осуществляться без регенерации (восстановления или улучшения) свойств этого материала (например, гранулят старого асфальтобетона может быть использован для укрепления обочин). Регенерация же предполагает обязательное восстановление свойств материала и его повторное использование.

Существует большое количество методов регенерации и повторного использования материалов, которые могут быть применены при реконструкции автомобильных дорог [ 2, 4]. Все эти методы можно объединить в несколько групп:

методы горячей регенерации на месте (на дороге) с использованием различных способов разогрева, разрыхления и улучшения свойств старого асфальтобетона с последующей укладкой его в покрытие;

методы холодной регенерации на месте (на дороге), когда материал старого покрытия (асфальтобетонного или цементобетонного) снимают холодным фрезерованием, обрабатывают битумной эмульсией или цементом и укладывают в нижний слой нового покрытия;

методы холодно-горячей регенерации (комбинированные методы), когда материал старого покрытия снимают холодной фрезой, а затем перерабатывают его с подогревом, добавлением нового щебня и битума в смесительной установке и укладывают в покрытие. При этом переработка может осуществляться на месте (на дороге) в передвижной смесительной установке или на стационарном асфальтобетонном заводе.

Методы горячей регенерации на месте, на дороге и методы горячего ресайклинга имеют несколько разновидностей.

В любом способе горячей регенерации одной из основных операций является разогрев старого асфальтобетонного покрытия. Задача состоит в том, чтобы плавно разогреть обрабатываемый слой асфальтобетона до температуры его переработки и при этом не перегреть вяжущее, которое при высокой температуре ухудшает свои свойства за счет испарения легких фракций и выгорает, если нагрев превышает температуру вспышки вяжущего, равную 180-220°С для вязких и 45-110°С для жидких битумов.

Температура переработки асфальтобетона на вязких, битумах колеблется от 100 до 150 °С, редко до 180-200°С.

Нагрев асфальтобетонного покрытия осуществляется при помощи газовых горелок инфракрасного излучения, объединенных в блоки или панели разогревателя. Сразу после полного включения панелей горелок, которые расположены над поверхностью покрытия на высоте не менее 5 см, идет быстрое нагревание верхнего слоя асфальтобетона, от которого тепло передается вниз (рис. 2).

Рис. 2. Температурный режим разогреваемого слоя: цифры на кривых — время нагрева в минутах

Режим разогрева слоя регулируют изменением давления в газовой системе, изменением положения панелей над поверхностью покрытия или скорости движения разогревателя.

Исходя из ограничений по температуре вспышки битума максимальная продолжительность непрерывного нагрева поверхности асфальтобетона не должна превышать 2,5-3 мин при температуре воздуха 20 °С. После этого необходимо понизить температуру нагревания или сделать перерыв в подаче тепла и затем продолжить нагрев до тех пор, пока температура всего слоя на глубину рыхления достигнет требуемых значений (рис. 3).

Рис. 3. Прерывистый (щадящий) режим разогрева асфальтобетонного покрытия при скорости движения 2 м/мин:

Т — температура нагрева, ° С; t — время, мин; t н - продолжительность работы горелок; t р - продолжительность перегрева в работе горелок; цифры на кривых означают глубину слоя прогрева, см

Теплообмен в слое протекает неравномерно. Вначале поверхность нагревается быстрее, чем нижние слои. К моменту рыхления верхние слои остывают, но нижние за счет теплопроводности аккумулированного тепла продолжают набирать температуру. Это обеспечивает при перемешивании среднюю стабильную температуру 80-100°С.

Как правило, разогрев производится при медленном движении блока горелок в две или три ступени. Сначала разогрев производят самоходным асфальторазогревателем для предварительного разогрева до температуры поверхности 90-100°С, затем в одну или две ступени окончательного разогрева до требуемой температуры.

Длина каждой панели или блока горелок определяется в зависимости от скорости движения разогревателя и допустимой, максимальной продолжительностью непрерывного нагрева асфальтобетона. При скорости движения разогревателя 2 м/мин и продолжительности нагрева 2,5 мин длина панели горелок составляет 5 м. При большей скорости движения длина панели увеличивается.

Глубину рыхления, которую разогревают до рабочей температуры, принимают не менее толщины слоя регенерации, которая зависит от крупности зерен щебня или песка в асфальтобетоне, но не менее:

- 20 мм для песчаных смесей;

- 25 мм для щебеночных смесей с зернами размером до 15 мм;

- 35 мм для щебеночных смесей с зернами размером до 20 мм.

Обычно глубину разогрева принимают 30-60 мм в зависимости от толщины верхнего слоя асфальтобетона и максимальной глубины рыхления, которую может обеспечить термосмеситель.

Выравнивание и восстановление формы покрытия с добавлением новой смеси и ее перемешивание со старой. Этот метод называется термопрофилированием, или Remix , а машины для его реализации называют Remixer . Из всех методов горячей регенерации метод термопрофилирования и машины ремиксеры разных фирм и модификаций получили наибольшее распространение.

Метод термопрофилирования применяют в том случае, когда существующее покрытие имеет много дефектов в виде трещин, колей, сетки трещин, а также когда необходимо усилить старое покрытие. Для этого к снятому и разрыхленному материалу старого покрытия добавляют новый материал в количестве 25-50 кг/м2 при ремонте без усиления и до 150 кг/м2при ремонте с усилением.

Для подбора состава добавляемой смеси с учетом свойств старого асфальтобетона из покрытия отбирают пробы (керны), изучают состав старой смеси, проектируют требуемый состав с учетом условий движения и эксплуатации дороги. Назначают вид и состав добавляемой смеси так, чтобы после ее перемешивания со старой смесью получить асфальтобетон с требуемыми свойствами.

Старый и новый материал перемешивают в мешалке, получают однородную смесь, которую укладывают в виде одного слоя покрытия. Глубина фрезерования старого покрытия может достигать 50-60 мм.

Метод позволяет скорректировать зерновой состав старого асфальтобетона, устранить последствия старения битума, повысить шероховатость покрытия и обеспечить хорошую связь между регенерированным слоем и старым покрытием.

Технологический процесс метода термопрофилирования включает в себя следующие основные операции (рис. 4):

Рис. 4. Последовательность технологических операций, выполняемых при термопрофилировании:

1 — покрытие до ремонта; 2 — нагрев; 3 — рыхление; 4 — сбор разрыхленной смеси, добавление новой, перемешивание; 5 — разравнивание, предварительное уплотнение; 6 — окончательное уплотнение; 7 — готовое покрытие

подготовительные работы, к которым относят ограждение места производства работ, подготовку машины и оборудования, разметку участка, загрузку новой смеси в приемный бункер и др.;

предварительный и окончательный разогрев существующего покрытия;

рыхление или фрезерование старого покрытия и подачу снятого материала в смеситель;

подачу в мешалку нового материала и перемешивание его со старым;

распределение и предварительное уплотнение асфальтобетонной смеси;

окончательное уплотнение слоя покрытия.

Оборудование для выполнения этих операций состоит из трех панелей горелок инфракрасного излучения для предварительного разогрева, смонтированных на отдельном шасси (разогреватель типа ДЭ-234), и термосмесителя типа ДЭ-232, в состав которого входят несколько блоков (панелей) нагревательных газовых горелок, емкости для сжатого газа, приемный бункер для новой смеси, рыхлитель-фреза, шнековый питатель для подачи нового материала в смеситель, мешалка (смеситель) принудительного действия, шнековый разравниватель и планирующий отвал, вибробрус для предварительного уплотнения и др.

Современные ремиксеры при необходимости могут выполнять все виды горячей регенерации на дороге.

Работы начинают после очистки покрытия от пыли и грязи. Разогрев покрытия производят ступенчато. Вначале в течение 6-7 мин производят предварительный прогрев покрытия. Затем при рабочей скорости 1,2-1,3 м/мин прогревают покрытие в течение 10-20 мин в зависимости от температуры воздуха. После этого выходят на стационарный режим движения 2,5-3 м/мин, температуры нагрева 110-120°С. Минимальная продолжительность нагрева Тм при высоте нагревателя над поверхностью покрытия 50 мм для слоя толщиной 40 мм зависит от температуры воздуха t в :

t в ,° C 10 20 30 40 Тм, мин 8,8 8 6,9 5,9

После разогрева верхний слой покрытия фрезеруется и полученный гранулят подается в смеситель, куда вводится новая горячая смесь, которая перемешивается с гранулятом, укладывается и уплотняется.

Важно отметить, что укладка смеси ведется на горячее основание, что улучшает процесс слияния верхнего и нижнего слоев в единый монолит. В результате за один проход получается новое, более прочное покрытие, устраняются колеи, трещины и неровности (рис. 5). Тем не менее, обычно на слой регенерированного асфальтобетона укладывают защитный слой или дополнительный тонкий слой нового асфальтобетона.

Рис. 5. Вид покрытия до и после регенерации

Разновидностью метода термосмешения является метод термопластификации . Он состоит в том, что в процессе фрезерования или перемешивания кроме новой смеси добавляют еще и пластификатор в количестве 0,1-0,6 % от массы смеси, который улучшает свойства битума в старой асфальтобетонной смеси. При этом во многих случаях нет необходимости добавлять новый материал, поскольку хорошо восстанавливаются свойства старого материала. Термопластификацию осуществляют обычным ремиксером, оснастив его узлом для введения пластификатора. Толщина обновляемого слоя до 50 мм. В качестве пластификатора используют масла нефтяного происхождения с содержанием ароматических углеводородов не менее 25 % по массе. Можно также применять экстракты селективной очистки масляных фракций нефти, зеленое масло и др.

Дальнейшим развитием метода регенерации с добавлением новой смеси и ее перемешиванием является так называемый метод «Ремикс плюс», который состоит в том, что на слой регенерированного асфальтобетона сразу той же машиной укладывается дополнительный слой усиления, или защитный слой из новой смеси. Для этого термосмеситель оборудуется дополнительным распределительным шнеком, расположенным за первым шнеком (рис. 6). Окончательное уплотнение первого и второго слоев производится одновременно, сначала легким вибрационным катком с выключенным вибратором или гладко-вальцевым катком массой 6-8 т, затем продолжают вибрационным катком с включенным вибратором и пневмоколесным катком массой 16-20 т. Завершают уплотнение тяжелым гладковальцовым катком.

Работы по термопрофилированию можно производить при температуре воздуха не ниже +20°С, а с применением дополнительного разогревателя — при температуре воздуха не ниже 5°С. Скорость ветра не должна быть более 7 м/с. При большей скорости ветра резко возрастают потери тепловой энергии, которая рассеивается в атмосфере. Кроме того, при сильном ветре происходит задувание горелок.

Новую технологию горячей регенерации асфальтобетонного покрытия на месте разработала фирма «Мартек» (Канада), которая выпускает для ее реализации специальный комплект машин AR 2000.

Комплект состоит из двух предварительных разогревателей, нагревателя-фрезеровщика, горячего смесителя, укладчика и катков (рис. 7).

Существенное отличие этой технологии состоит в том, что разогрев асфальтобетонного покрытия производится не горелками инфракрасного излучения, а нагретым до 600°С воздухом, который обтекает поверхность покрытия, нагнетается в поры асфальтобетона под давлением, создаваемым компрессором и вакуумированием (откачиванием) воздуха.

Рис. 6. Устройства для укладки дополнительного слоя покрытия при терморегенерации по методу «Ремикс плюс»:

1 — направление движения; 2 — впрыскивание битума; 3 — разрыхляющие валы; 4 — смеситель; 5 — готовая смесь; 6 — первый распределительный шнек; 7 — разравнивающий брус; 8 — второй распределительный шнек; 9 — смесеукладочный брус; 10 — слой смеси старого асфальтобетона с битумом; 11 — слой из новой смеси; 12 — подача новой смеси: 13 — старое покрытие

Рис. 7. Горячая регенерация комплектом машин AR -2000:

1, 2 — стадия первая — предварительный и полный разогрев; 3 — стадия вторая — продолжение разогрева до глубины 50 мм и разрыхление; 4 — стадия третья и четвертая — продолжение разогрева, подача материала в мешалку, добавление нового материала, перемешивание и укладка

Подогрев воздуха может производиться сжиганием газа или дизельного топлива. Разогревающее устройство в виде герметически замкнутого прямоугольника (коробки) плотно прижимается к поверхности покрытия. В пространство между покрытием и разогревателем с одной стороны накачивается горячий воздух, а с другой стороны он отсасывается вакуумным насосом. Откаченный горячий воздух снова поступает в компрессор и так постоянно циркулирует.

Это способствует многократному снижению потерь тепловой энергии при разогреве асфальтобетонного покрытия по сравнению с разогревом горелками инфракрасного излучения, полностью исключает выгорание битума и пережог смеси, а также выделение выбросов газа, дыма и пыли в атмосферу. Ширина обрабатываемой полосы может изменяться в диапазоне 3,3-4,0 м, глубина разогрева до 50 мм, скорость движения комплекта от 5 до 7 м/мин. За одну смену комплект обрабатывает полосу длиной около 3 км. Общая длина комплекта в работе составляет 75 м.

Эффективность работы этого комплекта особенно высока при больших объемах.

Комбинированные способы горячей регенерации состоят в том, что асфальтобетон старого покрытия снимается горячей фрезой, отправляется на стационарный асфальтобетонный завод, где он перерабатывается горячим способом с добавлением к старому асфальтобетону битума и около 60 % новых материалов.

Полученная смесь в горячем состоянии укладывается в покрытие на той дороге, где была получена старая смесь, или на другой дороге.

Методы холодной регенерации включают в себя снятие и размельчение материала слоев асфальтобетонного или цементобетонного покрытия, их обработку органическим или минеральным вяжущим с добавлением или без добавления новых минеральных материалов, укладку и уплотнение.

Одной из основных технологических операций холодной регенерации является снятие и размельчение материалов слоев существующей дорожной одежды. Эти операции обычно производят с помощью холодных фрез.

Для большинства асфальтобетонных покрытий, за исключением случая, когда заполнитель имеет очень низкую прочность, зубья планировщика разрушают старое дорожное покрытие по линиям асфальтовяжущего вещества. При этом гранулометрический состав исходной смеси изменяется очень мало и снятые куски и щебенки асфальтобетона обычно покрыты вяжущим, что позволяет использовать их для приготовления новой смеси с минимальным расходом битума или битумной эмульсии.

Холодным фрезерованием можно снимать старое покрытие послойно и тем самым отделять материал верхнего слоя из мелкозернистого асфальтобетона от материала нижнего слоя из крупнозернистого асфальтобетона с последующей укладкой в соответствующие слои дорожной одежды.

Холодное фрезерование дорожного покрытия применяют для снятия старого покрытия с трещинами, чтобы предупредить их выход на новое покрытие при усилении дорожной одежды; для восстановления поперечного профиля дорожной одежды и устранения колей, выбоин и других деформаций; увеличения вертикального габарита путепровода над дорогой; уменьшения собственного веса дорожной одежды на мостах и путепроводах; сохранения высоты бордюров и отметок водосборных, водоотводящих и дренажных систем в населенных пунктах, на городских улицах и в других случаях.

Глубина фрезерования зависит главным образом от состояния покрытия. Чаще всего одним проходом фрезерной машины снимают верхний слой, а на нижний слой укладывают новое покрытие из одного или нескольких слоев.

Способы холодной регенерации, или ресайклинга, отличаются между собой материалом, используемым для укрепления гранулята: органическим, минеральным или комплексным.

Полученный при холодном фрезеровании гранулят может быть повторно использован без переработки или с переработкой на месте в передвижной установке или на стационарном заводе с добавлением или без добавления минерального материала (щебня).

В режиме холодного ресайклинга широко используют обработку гранулята битумной эмульсией, жидким или вспененным битумом (рис. 8).

Рис. 8. Схема рабочих процессов и комплект машин для холодного ресайклинга с применением битумной эмульсии

При необходимости улучшить гранулометрический состав смеси или усилить дорожную одежду к полученному грануляту добавляют необходимое количество щебня. В этом случае работа выполняется в такой последовательности:

на очищенное старое покрытие вывозится и автогрейдером распределяется слой щебня;

машиной для холодного фрезерования снимается старое покрытие и полученный гранулят перемешивается в самой машине со щебнем. В момент перемешивания смеси добавляется вода для смачивания щебенок и битумная эмульсия в необходимом количестве;

смесь окончательно разравнивается автогрейдером и уплотняется.

На уложенный слой укладывается защитный слой или слой нового покрытия из асфальтобетона.

Холодный ресайклинг с применением в качестве вяжущего цемента обычно используется для устройства основания из гранулята, полученного при фрезеровании старого асфальтобетонного покрытия (рис. 9). При этом добавка цемента составляет 3-5 % от массы гранулята. Для достижения оптимальной влажности одновременно добавляется необходимое количество воды. Обработанная смесь разравнивается и уплотняется.

Рис. 9. Схема рабочих процессов и комплект машин для холодного ресайклинга с применением цемента

После набора прочности уложенной смеси устраивается новый слой асфальтобетонного покрытия или защитный слой.

Метод холодного ресайклинга асфальтобетонного покрытия может быть использован с применением комплексного вяжущего, состоящего из битумной эмульсии и цемента [ 2]. В результате получается асфальтогранулобетон (АГБ).

АГБ-смесь приготавливают в смесительной установке с принудительным перемешиванием в холодном состоянии асфальтобетонного гранулята с добавками: щебня фракций 5-25 мм (если необходимо), цемента, катионной битумной эмульсии и воды смачивания, если влажность гранулята ниже 1 %. Добавки в гранулят вводят в таком порядке: щебень, вода смачивания, эмульсия, цемент.

При приготовлении АГБ-смеси может быть использован гранулят, полученный как при послойном, так и однопроходном фрезеровании существующего покрытия на глубину 14-30 см. Однако кривая гранулометрического состава гранулята должна иметь плавное очертание и вписываться в границы составов для пористых и высокопористых смесей, зерен щебня фракций крупнее 5 мм должно быть не менее 35-40 %. В противном случае к грануляту добавляют щебень.

Ориентировочная доля отдельных компонентов по массе гранулята составляет:

битумной эмульсии — 2-4 %;

портландцемента — 2-5 %;

воды — 4-6 %.

Смесь укладывается на подготовленное основание при температуре воздуха не ниже 0 °С и уплотняется сначала виброплитой, а затем звеном катков. После испарения влаги (примерно через 2 ч после окончания уплотнения) можно открывать движение автотранспорта с ограничением скорости до 40 км/ч. Через 4-5 часов можно укладывать следующий слой асфальтобетона, который выполняет роль защитного слоя и слоя износа.

Технология может быть реализована в нескольких вариантах (рис. 10):

а) фреза работает в сцепе со смесителем укладчиком, который является ведущей машиной (рис. 10, а). Толщина укладываемого слоя до 12 см, производительность укладки 80-150 т/ч;

б) фреза оставляет асфальтогранулят на проезжей части и ее подбирает прицепной или самоходный подборщик, работающий в сцепе со смесителем укладчиком (рис. 10, б). При этом фреза и смеситель-укладчик могут иметь разную производительность;

в) регенерационное фрезерование совместно с выравнивающим фрезерованием (рис. 10, в). Фреза работает в одном звене с автомобилями-самосвалами, которые доставляют основной объем асфальтогранулята к смесителю-укладчику, а избыток — на другой объект или на склад.

Рис. 10. Технологические схемы холодной регенерации с использованием в качестве ведущей машины смесителя укладчика:

1 — старое покрытие; 2 — фреза; 3 — гранулят; 4 — смеситель-укладчик; 5 — каток; 6 — новый слой покрытия; 7 — подборщик; 8 — автомобили-самосвалы; 9 — склад АГ

Могут быть применены и другие технологические схемы в зависимости от конкретных условий (толщина и количество снимаемых и укладываемых слоев, необходимость добавления минерального материала, вида применяемого вяжущего и т.д.).

Методы холодно-горячей регенерации (комбинированные методы) можно разделить на две группы:

а) с переработкой старого асфальтобетона на месте (на дороге) в передвижных смесительных установках;

б) с переработкой старого асфальтобетона на стационарных асфальтобетонных заводах.

Технология холодно-горячей регенерации с переработкой старого асфальтобетона на месте в передвижной смесительной установке может быть реализована с использованием специального комплекта машин. Основной машиной этого комплекта является передвижная асфальтосмесительная установка с сушильным барабаном.

В состав комплекта входят: щебнераспределитель, холодная фрезеровальная машина, передвижная асфальтосмесительная установка, асфальтоукладчик, комплект катков.

Технология работ включает следующие операции:

на очищенное от пыли и грязи покрытие распределяется равномерный слой щебня на всю полосу обработки. Новый щебень обычно добавляют в количестве 50-70 % объема отфрезерованного гранулята;

холодной фрезой на глубину 30-50 мм снимается верхний слой покрытия, измельчается, одновременно перемешивается с новым щебнем и выкладывается в виде вала на полосе фрезерования;

погрузчиком-питателем смесь гранулята со щебнем подается в движущийся сушильный барабан асфальтосмесительной установки, где смесь высушивается и подогревается до рабочей температуры;

горячая смесь поступает в смесительное отделение асфальтосмесителя, куда вводится битум в количестве 5-7 % от массы нового щебня, и перемешивается;

из смесителя готовая смесь выгружается в приемный бункер асфальтоукладчика, распределяется и предварительно уплотняется;

окончательное уплотнение производится комплектом катков.

В результате общая толщина асфальтобетонного покрытия увеличивается на 2-4 см. На этот слой укладывается защитный слой в виде поверхностной обработки или слой износа из новой асфальтобетонной смеси.

В городских условиях переработку снятого холодной фрезой гранулята, как правило, производят на стационарных асфальтобетонных заводах, где имеются лучшие условия для обеспечения высокого качества регенерированного асфальтобетона.

Особенности обеспечения качества при регенерации и повторном использовании материалов. Регенерация и ресайклинг являются перспективными методами ремонта дорожных покрытий. Однако эти технологии требуют дальнейшего развития и совершенствования, особенно в отношении качества материалов и слоев дорожной одежды, получаемых с применением указанных технологий.

Одна из главных проблем состоит в неоднородности материала старого покрытия, который после переработки и улучшения укладывается повторно. Неоднородность обусловлена тем, что старое покрытие могло быть уложено много лет назад различной толщиной слоев, из различных материалов, особенно битумов, которые со временем изменяют свои свойства.

В процессе эксплуатации старое покрытие неоднократно ремонтировалось с применением различных технологий и материалов. Поэтому к моменту регенерации и повторного использования состав материала снимаемых слоев может существенно измениться на отдельных участках. Необходим тщательный контроль за составом, качеством и однородностью материала старого покрытия.

Другая проблема состоит в том, что в процессе фрезерования получают гранулы различной величины, некоторая часть щебня размельчается и обнажает не обработанную битумом поверхность. Другие частицы минерального материала остаются покрытыми битумной пленкой. При перемешивании с новым вяжущим и введением нового щебня толщина пленки на старых и новых частицах минерального материала может быть неравномерной. Все это приводит к неоднородности получаемого материала и снижает его физико-механические свойства. Учитывая эти особенности, переработанный материал старого покрытия обычно укладывают в нижние слои новой дорожной одежды или в слои, которые закрывают защитным слоем.

Полная разборка существующей дорожной одежды должна обеспечить возможно меньшее перемешивание материалов слоев, чтобы создать возможность более эффективного дальнейшего использования этих материалов.

В зависимости от конструкции дорожной одежды и с учетом разнообразия и различной ценности материалов отдельных конструктивных слоев разборку выполняют сразу на всю толщину одежды или послойно. При разборке отдельно измельчают, снимают и вывозят слои асфальтобетона. Также отдельно снимают щебеночные, гравийные, шлаковые материалы и булыжный камень разбираемых мостовых. Песок старых песчаных оснований используют в редких случаях.

При разборке облегченных усовершенствованных покрытий, толщина которых превышает 8-10 см, предварительно разрыхляют и снимают обработанный вяжущим слой и используют его для устройства основания на новой дороге. Так же поступают с основаниями из материалов, не обработанных вяжущими, если считают возможным использование их в дорожной одежде. Основание разламывают на всю ширину, и материал вывозят на новое место. Если материал покрытия обработан вяжущим на небольшую толщину и нецелесообразно его использовать отдельно, разбирают и взламывают дорожную одежду на всю толщину, захватывая иногда и верхний слой песка дренирующего слоя.

Для разрыхления сборных дорожных покрытий и уплотненных грунтов можно использовать ряд машин, выпускаемых промышленностью. Для снятия асфальтобетонных слоев наиболее целесообразно использовать бульдозеры с приспособлением в виде клыков-зубьев (рис. 1). При проходе бульдозер приподнимает и разламывает асфальтобетонное покрытие на крупные куски. Для измельчения этих кусков применяют специальные машины.

Рис. 1. Приспособление к бульдозеру для взламывания асфальтобетонных покрытий:

1 — стальные зубья; 2 — плита; 3 — ребра жесткости; 4 — упор для ножа; 5 — отверстия для болтов; 6 — хомут для подвешивания приспособления к раме бульдозера

Технология полной разборки слоев существующей одежды включает ряд последовательных операций. Послойное рыхление слоев существующего покрытия и основания, кроме песчаного, осуществля ется бульдозером с навесным рыхлителем за несколько параллельных проходов вдоль проезжей части. Для слоев из гравийных и гравийно-песчаных смесей возможно применение автогрейдера с кирковщиком. Проходы рыхлительных машин должны осуществляться с перекрытием на 0,2-0,25 ширины. Для измельчения цементобетонных покрытий и оснований и других достаточно прочных слоев из материалов, обработанных цементом в установке, эффективно применение автобетоноломов различных конструкций, разрушающих прочные слои пневмоударным или электроударным способами. Разрушенный материал данного слоя сдвигают в кучи, расположенные на расстоянии 15-20 м одна от другой. Сдвижку материала осуществляют бульдозером.

Из куч материал разрушенного слоя грузят в автомобили-самосвалы, отвозящие этот материал на промежуточные склады. Для погрузки могут быть использованы одноковшовые фронтальные погрузчики либо экскаваторы с ковшом прямая или обратная лопата. Мелкий материал можно грузить многоковшовыми погрузчиками.

В ряде случаев возможна разборка верхнего слоя из асфальтобетона или цементобетона лишь на часть его толщины. Такая необходимость может возникать при выравнивании существующего покрытия, на котором в процессе эксплуатации образовались колеи, наплывы и другие неровности; при удалении верхнего ослабленного слоя покрытия; при необходимости уменьшить толщину существующего покрытия перед укладкой нового слоя для выравнивания или усиления существующей дорожной одежды без изменения вертикальных отметок ее поверхности. Последнее решение наиболее часто применяется в городских условиях, чтобы сохранить высоту расположения бортового камня над поверхностью покрытия.

В целях частичной разборки верхнего слоя широко применяют машины для холодного фрезерования покрытия. Основным рабочим органом такой машины является фреза, барабан которой снабжен высокопрочными режущими зубьями. В процессе вращения барабана фрезы срезается слой покрытия на заданную толщину, срезанный фрезой материал грузят транспортером в транспортное средство или отсыпают в отвал.

Для охлаждения рабочего органа машины его в процессе работы опрыскивают водой. Поверхность, остающаяся после фрезерования, является основанием для нового слоя покрытия. Эта поверхность должна быть параллельна поверхности укладываемого на нее слоя. Машина для холодного фрезерования обеспечивает: необходимую глубину фрезерования; требуемый поперечный уклон; заданный продольный уклон; чистоту кромки фрезерования.

Существует значительное количество типоразмеров машин для холодного фрезерования покрытий шириной 1,3-4,2 м при максимальной глубине фрезерования 150-300 мм (см. гл. 39).

Выбор типоразмера холодной фрезы зависит от объема работ и необходимой глубины фрезерования с учетом технико-экономических соображений.

При оценке возможности и целесообразности использования материалов, полученных при разборке существующих дорожных одежд, выполняют:

визуальную оценку состояния материалов и предварительное определение вида сооружения, в котором они могут быть использованы (слои вновь строящейся дорожной одежды, укрепление обочин, строительство временного объезда и др.);

определение вида работ, необходимых для приведения материалов в состояние, пригодное для их использования в том или ином сооружении (дробление крупных кусков или фракций материалов, поливка, введение добавок);

разработку технологии строительства из данных материалов намеченных сооружений, включая способы обработки вяжущим, регенерацию старого асфальтобетона или продуктов фрезерования асфальтобетонного покрытия на заводе;

технико-экономическую оценку применения продуктов разборки старой дорожной одежды в тех или иных сооружениях в сравнении с использованием новых материалов.

После установления вида сооружения, где может быть использован данный материал, производят в необходимых случаях испытание этого материала в лабораторных условиях для определения соответствия требованиям стандартов, СНиП и других нормативных документов (определение зернового состава щебёночных и гравийных смесей, износа в полочном барабане, морозостойкости каменного материала, его марки по прочности, коэффициента фильтрации песчано-гравийных смесей или песка до промывки и после промывки). В случае обработки продуктов разборки старой одежды вяжущим подбор состава смесей производят по действующим нормативным документам.

Использование старых материалов из дорожных одежд необходимо обосновывать с учетом оценки их качества и стоимости получения, которые являются решающими для дальнейших технико-экономических обоснований. Каждый элемент автомобильной дороги имеет определенную строительную стоимость, учитываемую на балансе дорожной организации. К моменту реконструкции дороги балансовая стоимость за счет износа дорожных сооружений за период их службы значительно уменьшается по сравнению с первоначальной. Практически балансовую стоимость старой дорожной одежды, подлежащей разборке, можно принимать равной стоимости слагающих материалов. Материалы старой одежды оценивают с учетом их износа и уменьшения стоимости на величину расходов по разборке и последующей обработке (очистка, прогрохотка и т. п.), а также по доставке к месту использования, то есть на место укладки в новую одежду. При составлении смет полученную стоимость старых материалов включают

Просмотров: 1488 | Добавил: whewhey | Рейтинг: 0.0/0
Всего комментариев: 0


Сделать бесплатный сайт с uCoz
Copyright MyCorp © 2024